MATH 2050A: Mathematical Analysis I (2017 1st term)

Chi-Wai Leung

1 Compact Sets in \mathbb{R}

Throughout this section, let (x_n) be a sequence in \mathbb{R} . Recall that a subsequence $(x_{n_k})_{k=1}^{\infty}$ of (x_n) means that $(n_k)_{k=1}^{\infty}$ is a sequence of positive integers satisfying $n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$, that is, such sequence (n_k) can be viewed as a strictly increasing function $\mathbf{n}: k \in \{1, 2, ...\} \mapsto n_k \in \{1, 2, ...\}$.

In this case, note that for each positive integer N, there is $K \in \mathbb{N}$ such that $n_K \geq N$ and thus we have $n_k \geq N$ for all $k \geq K$.

Let us first recall the following two important theorems in real line.

Theorem 1.1 Nested Intervals Theorem Let $(I_n := [a_n, b_n])$ be a sequence of closed and bounded intervals. Suppose that it satisfies the following conditions.

- $(i): I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$
- (ii): $\lim_{n}(b_n a_n) = 0.$

Then there is a unique real number ξ such that $\bigcap_{n=1}^{\infty} I_n = \{\xi\}$.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3].

Theorem 1.2 (Bolzano-Weierstrass Theorem) Every bounded sequence in \mathbb{R} has a convergent subsequence.

Proof: See [1, Theorem
$$3.4.8$$
].

Definition 1.3 A subset A of \mathbb{R} is said to be *compact* (more precise, *sequentially compact*) if every sequence in A has a convergent subsequence with the limit in A.

We are now going to characterize the compact subsets of \mathbb{R} . The following is an important notation in mathematics.

Definition 1.4 A subset A is said to be *closed* in \mathbb{R} if it satisfies the condition:

if (x_n) is a sequence in A and $\lim x_n$ exists, then $\lim x_n \in A$.

Example 1.5 (i) $\{a\}$; [a,b]; $[0,1] \cup \{2\}$; \mathbb{N} ; the empty set \emptyset and \mathbb{R} all are closed subsets of \mathbb{R} .

(ii) (a, b) and \mathbb{Q} are not closed.

The following Proposition is one of the basic properties of a closed subset which can be directly shown by the definition. So, the proof is omitted here.

Proposition 1.6 Let A be a subset of \mathbb{R} . The following statements are equivalent.

- (i) A is closed.
- (ii) For each element $x \in \mathbb{R} \setminus A$, there is $\delta_x > 0$ such that $(x \delta_x, x + \delta_x) \cap A = \emptyset$.

The following is an important characterization of a compact set in \mathbb{R} . Warning: this result is not true for the so-called *metric spaces* in general.

Theorem 1.7 Let A be a closed subset of \mathbb{R} . Then the following statements are equivalent.

- (i) A is compact.
- (ii) A is closed and bounded.

Proof: It is clear that the result follows if $A = \emptyset$. So, we assume that A is non-empty. For showing $(i) \Rightarrow (ii)$, assume that A is compact.

We first claim that A is closed. Let (x_n) be a sequence in A. Then by the compactness of A, there is a convergent subsequence (x_{n_k}) of (x_n) with $\lim_k x_{n_k} \in A$. So, if (x_n) is convergent, then $\lim_n x_n = \lim_k x_{n_k} \in A$. Therefore, A is closed.

Next, we are going to show the boundedness of A. Suppose that A is not bounded. Fix an element $x_1 \in A$. Since A is not bounded, we can find an element $x_2 \in A$ such that $|x_2 - x_1| > 1$. Similarly, there is an element $x_3 \in A$ such that $|x_3 - x_k| > 1$ for k = 1, 2. To repeat the same step, we can obtain a sequence (x_n) in A such that $|x_n - x_m| > 1$ for $m \neq n$. From this, we see that the sequence (x_n) does not have a convergent subsequence. In fact, if (x_n) has a convergent subsequence (x_{n_k}) . Put $L := \lim_k x_{n_k}$. Then we can find a pair of sufficient large positive integers p and q with $p \neq q$ such that $|x_{n_p} - L| < 1/2$ and $|x_{n_q} - L| < 1/2$. This implies that $|x_{n_p} - x_{n_q}| < 1$. It leads to a contradiction because $|x_{n_p} - x_{n_q}| > 1$ by the choice of the sequence (x_n) . Thus, A is bounded.

It remains to show $(ii) \Rightarrow (i)$. Suppose that A is closed and bounded.

Let (x_n) be a sequence in A. Thus, (x_n) . Then the Bolzano-Weierstrass Theorem assures that there is a convergent subsequence (x_{n_k}) . Then by the closeness of A, $\lim_k x_{n_k} \in A$. Thus A is compact.

The proof is finished.

2 Appendix: Compact sets in \mathbb{R} , Part 2

For convenience, we call a collection of open intervals $\{J_{\alpha} : \alpha \in \Lambda\}$ an open intervals cover of a given subset A of \mathbb{R} , where Λ is an arbitrary non-empty index set, if each J_{α} is an open

interval (not necessary bounded) and

$$A \subseteq \bigcup_{\alpha \in \Lambda} J_{\alpha}.$$

Theorem 2.1 Heine-Borel Theorem: Any closed and bounded interval [a,b] satisfies the following condition:

(HB) Given any open intervals cover $\{J_{\alpha}\}_{{\alpha}\in\Lambda}$ of [a,b], we can find finitely many $J_{\alpha_1},..,J_{\alpha_N}$ such that $[a,b]\subseteq J_{\alpha_1}\cup\cdots\cup J_{\alpha_N}$

Proof: Suppose that [a,b] does not satisfy the above Condition (HB). Then there is an open intervals cover $\{J_{\alpha}\}_{{\alpha}\in\Lambda}$ of [a,b] but it it has no finite sub-cover. Let $I_1:=[a_1,b_1]=[a,b]$ and m_1 the mid-point of $[a_1,b_1]$. Then by the assumption, $[a_1,m_1]$ or $[m_1,b_1]$ cannot be covered by finitely many J_{α} 's. We may assume that $[a_1,m_1]$ cannot be covered by finitely many J_{α} 's. Put $I_2:=[a_2,b_2]=[a_1,m_1]$. To repeat the same steps, we can obtain a sequence of closed and bounded intervals $I_n=[a_n,b_n]$ with the following properties:

- (a) $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$;
- (b) $\lim_{n} (b_n a_n) = 0;$
- (c) each I_n cannot be covered by finitely many J_{α} 's.

Then by the Nested Intervals Theorem, there is an element $\xi \in \bigcap_n I_n$ such that $\lim_n a_n = \lim_n b_n = \xi$. In particular, we have $a = a_1 \le \xi \le b_1 = b$. So, there is $\alpha_0 \in \Lambda$ such that $\xi \in J_{\alpha_0}$. Since J_{α_0} is open, there is $\varepsilon > 0$ such that $(\xi - \varepsilon, \xi + \varepsilon) \subseteq J_{\alpha_0}$. On the other hand, there is $N \in \mathbb{N}$ such that a_N and b_N in $(\xi - \varepsilon, \xi + \varepsilon)$ because $\lim_n a_n = \lim_n b_n = \xi$. Thus we have $I_N = [a_N, b_N] \subseteq (\xi - \varepsilon, \xi + \varepsilon) \subseteq J_{\alpha_0}$. It contradicts to the Property (c) above. The proof is finished.

Remark 2.2 The assumption of the closeness and boundedness of an interval in Heine-Borel Theorem is essential.

For example, notice that $\{J_n := (1/n, 1) : n = 1, 2...\}$ is an open interval covers of (0, 1) but you cannot find finitely many J_n 's to cover the open interval (0, 1).

The following is a very important feature of a compact set.

Theorem 2.3 Let A be a subset of \mathbb{R} . Then the following statements are equivalent.

- (i) For any open intervals cover $\{J_{\alpha}\}_{{\alpha}\in\Lambda}$ of A, we can find finitely many $J_{\alpha_1},..,J_{\alpha_N}$ such that $A\subseteq J_{\alpha_1}\cup\cdots\cup J_{\alpha_N}$.
- (ii) A is compact.
- (iii) A is closed and bounded.

Proof: The result will be shown by the following path

$$(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).$$

For $(i) \Rightarrow (ii)$, assume that the condition (i) holds but A is not compact. Then there is a sequence (x_n) in A such that (x_n) has no subsequent which has the limit in A. Put $X = \{x_n : n = 1, 2, ...\}$. Then X is infinite. Also, for each element $a \in A$, there is $\delta_a > 0$ such that $J_a := (a - \delta_a, a + \delta_a) \cap X$ is finite. Indeed, if there is an element $a \in A$ such that $(a - \delta, a + \delta) \cap A$ is infinite for all $\delta > 0$, then (x_n) has a convergent subsequence with the limit a. On the other hand, we have $A \subseteq \bigcup_{a \in A} J_a$. Then by the compactness of A, we can find finitely many $a_1, ..., a_N$ such that $A \subseteq J_{a_1} \cup \cdots \cup J_{a_N}$. So we have $X \subseteq J_{a_1} \cup \cdots \cup J_{a_N}$. Then by the choice of J_a 's, X must be finite. This leads to a contradiction. Therefore, A must be compact.

The implication $(ii) \Rightarrow (iii)$ follows from Theorem 1.7 at once.

It remains to show $(iii) \Rightarrow (i)$. Suppose that A is closed and bounded. Then we can find a closed and bounded interval [a,b] such that $A \subseteq [a,b]$. Now let $\{J_{\alpha}\}_{{\alpha} \in \Lambda}$ be an open intervals cover of A. Notice that for each element $x \in [a,b] \setminus A$, there is $\delta_x > 0$ such that $(x - \delta_x, x + \delta_x) \cap A = \emptyset$ since A is closed by using Proposition 6.4. If we put $I_x = (x - \delta_x, x + \delta_x)$ for $x \in [a,b] \setminus A$, then we have

$$[a,b] \subseteq \bigcup_{\alpha \in \Lambda} J_{\alpha} \cup \bigcup_{x \in [a,b] \setminus A} I_{x}.$$

Using the Heine-Borel Theorem 2.1, we can find finitely many J_{α} 's and I_x 's, say $J_{\alpha_1}, ..., J_{\alpha_N}$ and $I_{x_1}, ..., I_{x_K}$, such that $A \subseteq [a, b] \subseteq J_{\alpha_1} \cup \cdots \cup J_{\alpha_N} \cup I_{x_1} \cup \cdots \cup I_{x_K}$. Note that $I_x \cap A = \emptyset$ for each $x \in [a, b] \setminus A$ by the choice of I_x . Therefore, we have $A \subseteq J_{\alpha_1} \cup \cdots \cup J_{\alpha_N}$ and hence A is compact.

The proof is finished. \Box

Remark 2.4 In fact, the condition in Theorem 2.3(i) is the usual definition of a *compact set* for a general topological space. More precise, if a set A satisfies the Definition 1.4, then A is said to be *sequentially compact*. Theorem 2.3 tells us that the notation of the compactness and the sequentially compactness are the same as in the case of a subset of \mathbb{R} . However, these two notation are different for a general topological space.

Strongly recommended: take the courses: MATH 3060; MATH3070 for the next step.

3 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of \mathbb{R} and $f: A \to \mathbb{R}$ a function defined on A.

Proposition 3.1 Let f be a continuous function defined on a compact subset A of \mathbb{R} . Then f(A) is a compact subset of \mathbb{R} .

Proof: **Method I**: By using Theorem 2.3 $(i) \Leftrightarrow (iii)$, it suffices to show that f(A) is a closed bounded subset of \mathbb{R} .

Claim 1: f(A) is bounded.

Suppose not. Then for each positive integer n, there is an element $x_n \in A$ such that $|f(x_n)| > n$.

Since A is compact, there is a convergent subsequence (x_{n_k}) with $a := \lim_k x_{n_k} \in A$. This gives $\lim_k f(x_{n_k}) = f(a)$ because f is continuous on a and hence, $(f(x_{n_k}))$ is a bounded sequence. This leads to a contradiction to the choice of (x_n) which satisfies $|f(x_{n_k})| > n_k$ for all k = 1, 2... Claim 2: f(A) is a closed subset of \mathbb{R} , that is, $y \in f(A)$ whenever, a sequence (x_n) in A satisfying $\lim_n f(x_n) = y$.

In fact, there is a convergent subsequence (x_k) with $z := \lim_k x_k \in A$ by using the compactness of A again. This gives $y = \lim_k f(x_{n_k}) = f(z) \in f(A)$ as desired since f is continuous on A. **Method II:** Alternatively, we are going to use Theorem 2.3 $(i) \Leftrightarrow (ii)$.

Let $\{J_i\}_{i\in I}$ be an open interval covers of f(A). We may assume $J_i\cap f(A)\neq\emptyset$ for each $i\in I$. Notice that since J_i is an open interval and f is continuous, we see that if $f(x)\in J_i$, then we can find $\delta_x>0$ such that $f(z)\in J_i$ whenever $z\in A$ with $|z-x|<\delta_x$. Notice that we have $A\subseteq\bigcup_{x\in A}J_x$, where $V_x:=(x-\delta_x,x+\delta_x)$ and hence, $\{V_x:x\in A\}$ forms an open intervals cover of A. By using the equivalence $(i)\Leftrightarrow (ii)$ in Theorem 2.3, we can find finitely many $x_1,...,x_n$ in A such that $A\subseteq V_{x_1}\cup\cdots\cup V_{x_n}$. For each k=1,...,n, then $f(x_k)\in J_{i_k}$ for some $i_k\in I$. Now if $x\in A$, then $x\in V_{x_k}$ for some k=1,...,n. This gives $f(x)\in J_{i_k}$ and thus, $f(A)\subseteq J_{i_1}\cup\cdots\cup J_{i_n}$. The proof is finished.

Corollary 3.2 If $f: A \to \mathbb{R}$ is a continuous injection and A is compact, then the inverse map $f^{-1}: f(A) \to A$ is also continuous.

Proof: Let B = f(A) and $g = f^{-1} : B \to A$. Suppose that g is not continuous at some $b \in B$. Put $a = g(b) \in A$. Then there are $\eta > 0$ and a sequence (y_n) in B such that $\lim y_n = b$ but $|g(y_n) - g(b)| \ge \eta$ for all n. Let $x_n := g(y_n) \in A$. So, by the compactness of A, there is a convergent subsequence (x_{n_k}) of (x_n) such that $\lim_k x_{n_k} \in A$. Let $a' = \lim_k x_{n_k}$. Then we have $f(a') = \lim_k f(x_{n_k}) = \lim_k y_{n_k} = b$. On the other hand, since $|g(y_n) - g(b)| \ge \eta$ for all n, we see that

$$|x_{n_k} - a| = |g(y_{n_k}) - g(b)| \ge \eta > 0$$

for all k and hence |a'-a| > 0. This implies that $a \neq a'$ but f(a') = b = f(a). It contradicts to f being injective.

The proof is finished. \Box

Remark 3.3 The assumption of the compactness in the last assertion of Proposition 3.2 is essential. For example, consider $A = [0,1) \cup [2,3]$ and define $f: A \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \in [0, 1) \\ x - 1 & \text{if } x \in [2, 3]. \end{cases}$$

Then f(A) = [0, 2] and f is a continuous bijection from A onto [0, 2] but $f^{-1} : [0, 2] \to A$ is not continuous at y = 1.

Example 3.4 By Proposition 3.2, it is impossible to find a continuous surjection from [0,1] onto (0,1) since [0,1] is compact but (0,1) is not. Thus [0,1] is not homeomorphic to (0,1).

Proposition 3.5 Suppose that f is continuous on A. If A is compact, then there are points c and b in A such that

$$f(c) = \max\{f(x) : x \in A\} \text{ and } f(b) = \min\{f(x) : x \in A\}.$$

Proof: By considering the function -f on A, it needs to show that $f(c) = \max\{f(x) : x \in A\}$ for some $c \in A$.

Method I:

We first claim that f is bounded on A, that is, there is M > 0 such that $|f(x)| \leq M$ for all $x \in A$. Suppose not. Then for each $n \in \mathbb{N}$, we can find $a_n \in A$ such that $|f(a_n)| > n$. Recall that A is compact if and only if it is closed and bounded (see Theorem ??). So, (a_n) is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent subsequence (a_{n_k}) of (a_n) . Put $a = \lim_k a_{n_k}$. Since A is closed and f is continuous, $a \in A$, from this, it follows that $f(a) = \lim_k f(a_{n_k})$. It is absurd because $n_k < |f(a_{n_k})| \to |f(a)|$ for all k and $n_k \to \infty$. So f must be bounded. So $L := \sup\{f(x) : x \in A\}$ must exist by the Axiom of Completeness.

It remains to show that there is a point $c \in A$ such that f(c) = L. In fact, by the definition of supremum, there is a sequence (x_n) in A such that $\lim_n f(x_n) = L$. Then by the Bolzano-Weierstrass Theorem again, there is a convergent subsequence (x_{n_k}) of (x_n) with $\lim_k x_{n_k} \in A$. If we put $c := \lim_k x_{n_k} \in A$, then $f(c) = \lim_k f(x_{n_k}) = L$ as desired. The proof is finished.

Method II:

We first claim that f is bounded above. Notice that for each $x \in A$, there is $\delta_x > 0$ such that f(y) < f(x) + 1 whenever $y \in A$ with $|x - y| < \delta_x$ since f is continuous on A. Now if we put $J_x := (x - \delta_x, x + \delta_x)$ for each $x \in A$, then $A \subseteq \bigcup_{x \in A} J_x$. So, by the compactness of A, we can find finitely many $x_1, ..., x_N$ in A such that $A \subseteq J_{x_1} \cup \cdots \cup J_{x_N}$ and it follows that for each $x \in A$, we have $f(x) < 1 + f(x_k)$ for some k = 1, ..., N. Now if we put $M := \max\{1 + f(x_1), ..., 1 + f(x_N)\}$, then f is bounded above by M on A.

Put $L:=\sup\{f(x):x\in A\}$. It remains to show that there is an element $c\in A$ such that f(c)=L. Suppose not. Notice that since $f(x)\leq L$ for all $x\in A$, we have f(x)< L for all $x\in A$ under this assumption. Therefore, by the continuity of f, for each $x\in A$, there are $\varepsilon_x>0$ and $\eta_x>0$ such that $f(y)< f(x)+\varepsilon_x< L$ whenever $y\in A$ with $|y-x|<\delta_x$. Put $I_x:=(x-\eta_x,x+\eta_x)$. Then $A\subseteq\bigcup_{x\in A}I_x$. By the compactness of A again, A can be covered by finitely many $I_{x_1},...,I_{x_N}$. If we let $L':=\max\{f(x_1)+\varepsilon_{x_1},...,f(x_N)+\varepsilon_{x_N}\}$, then f(x)< L'< L for all $x\in A$. It contradicts to L being the least upper bound for the set $\{f(x):x\in A\}$. The proof is complete.

Definition 3.6 We say that a function f is upper semi-continuous (resp. lower semi-continuous) on A if for each element $z \in A$ and for any $\varepsilon > 0$, there is $\delta > 0$ such that $f(x) < f(z) + \varepsilon$ (resp. $f(z) - \varepsilon < f(x)$) whenever $x \in A$ with $|x - z| < \delta$.

Remark 3.7 (i) It is clear that a function is continuous if and only if it is upper semi-continuous and lower semi-continuous. However, an upper semi-continuous function need not be continuous. For example, define a function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0, 1] \\ 0 & \text{otherwise.} \end{cases}$$

(ii) From the **Method II** above, we see that if f is upper semi-continuous (resp. lower semi-continuous) on a compact set A, then the function f attains the supremum (resp. infimum) on A.

4 Uniform Continuous Functions

Definition 4.1 A function $f: A \to \mathbb{R}$ is said to be uniformly continuous on A if for any $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $x, y \in A$ with $|x - y| < \delta$.

Remark 4.2 It is clear that if f is uniformly continuous on A, then it must be continuous on A. However, the converse does not hold. For example, consider the function $f:(0,1] \to \mathbb{R}$ defined by f(x) := 1/x. Then f is continuous on (0,1] but it is not uniformly continuous on (0,1]. Notice that f is not uniformly continuous on A means that

there is $\varepsilon > 0$ such that for any $\delta > 0$, there are $x, y \in A$ with $|x - y| < \delta$ but $|f(x) - f(y)| \ge \varepsilon$.

Notice that $1/x \to \infty$ as $x \to 0+$. So if we let $\varepsilon = 1$, then for any $\delta > 0$, we choose $n \in \mathbb{N}$ such that $1/n < \delta$ and thus we have $|1/2n - 1/n| = 1/2n < \delta$ but $|f(1/n) - f(1/2n)| = n > 1 = \varepsilon$. Therefore, f is not uniformly continuous on (0, 1].

Example 4.3 Let 0 < a < 1. Define f(x) = 1/x for $x \in [a, 1]$. Then f is uniformly continuous on [a, 1]. In fact for $x, y \in [a, 1]$, we have

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \frac{|x - y|}{xy} \le \frac{|x - y|}{a^2}.$$

So for any $\varepsilon > 0$, we can take $0 < \delta < a^2 \varepsilon$. Thus if $x, y \in [a, 1]$ with $|x - y| < \delta$, then we have $|f(x) - f(y)| < \varepsilon$ and hence f is uniformly continuous on [a, 1].

Proposition 4.4 If f is continuous on a compact set A, then f is uniformly continuous on A.

Proof: Compactness argument:

Let $\varepsilon > 0$. Since f is continuous on A, then for each $x \in A$, there is $\delta_x > 0$, such that $|f(y)-f(x)| < \varepsilon$ whenever $y \in A$ with $|y-x| < \delta_x$. Now for each $x \in A$, set $J_x = (x - \frac{\delta_x}{2}, x + \frac{\delta_x}{2})$. Then $A \subseteq \bigcup_{x \in A} J_x$. By the compactness of A, there are finitely many $x_1, ..., x_N \in A$ such that $A \subseteq J_{x_1} \cup \cdots \cup J_{x_N}$. Now take $0 < \delta < \min(\frac{\delta_{x_1}}{2}, ..., \frac{\delta_{x_N}}{2})$. Now for $x, y \in A$ with $|x-y| < \delta$, then $x \in I_{x_k}$ for some k = 1, ..., N, from this it follows that $|x-x_k| < \frac{\delta_{x_k}}{2}$ and $|y-x_k| \le |y-x| + |x-x_k| \le \frac{\delta_{x_k}}{2} + \frac{\delta_{x_k}}{2} = \delta_{x_k}$. So for the choice of δ_{x_k} , we have $|f(y)-f(x_k)| < \varepsilon$ and $|f(x)-f(x_k)| < \varepsilon$. Thus we have shown that $|f(x)-f(y)| < 2\varepsilon$ whenever $x, y \in A$ with $|x-y| < \delta$. The proof is finished.

Sequentially compactness argument:

Suppose that f is not uniformly continuous on A. Then there is $\varepsilon > 0$ such that for each n=1,2,..., we can find x_n and y_n in A with $|x_n-y_n|<1/n$ but $|f(x_n)-f(y_n)| \ge \varepsilon$. Notice that by the sequentially compactness of A, (x_n) has a convergent subsequence (x_{n_k}) with $a:=\lim_k x_{n_k}\in A$. Now applying sequentially compactness of A for the sequence (y_{n_k}) , then (y_{n_k}) contains a convergent subsequence $(y_{n_{k_j}})$ such that $b:=\lim_j y_{n_{k_j}}\in A$. On the other hand, we also have $\lim_j x_{n_{k_j}}=a$. Since $|x_{n_{k_j}}-y_{n_{k_j}}|<1/n_{k_j}$ for all j, we see that a=b. This implies that $\lim_j f(x_{n_{k_j}})=f(a)=f(b)=\lim_j f(y_{n_{k_j}})$. This leads to a contradiction since we always have $|f(x_{n_{k_j}})-f(y_{n_{k_j}})|\ge \varepsilon > 0$ for all j by the choice of x_n and y_n above. The proof is finished.

Proposition 4.5 Let f be a continuous function defined on a bounded subset A of \mathbb{R} . Then the following statements are equivalent.

- (i): f is uniformly continuous on A.
- (ii): There is a unique continuous function F defined on the closure \overline{A} such that F(x) = f(x) for all $x \in A$.

Proof: Notice that since A is bounded then so is \overline{A} . This implies that \overline{A} is compact. The Part $(ii) \Rightarrow (i)$ follows Proposition 4.4 at once.

The proof of Part $(i) \Rightarrow (ii)$ is divided by the following assertions. Assume that f is uniformly continuous on A.

Claim 1. If (x_n) is a sequence in A and $\lim x_n$ exists, then $\lim f(x_n)$ exists.

It needs to show that $(f(x_n))$ is a Cauchy sequence. Indeed, let $\varepsilon > 0$. Then by the uniform continuity of f on A, there is $\delta > 0$ such that $|f(x)-f(y)| < \varepsilon$ whenever $x,y \in A$ with $|x-y| < \delta$. Notice that (x_n) is a Cauchy sequence since it is convergent. Thus, there is a positive integer N such that $|x_m - x_n| < \delta$ for all $m, n \ge N$. This implies that $|f(x_m) - f(x_n)| < \varepsilon$ for all $m, n \ge N$ and hence, Claim 1 follows.

Claim 2. If (x_n) and (y_n) both are convergent sequences in A and $\lim x_n = \lim y_n$, then $\lim f(x_n) = \lim f(y_n)$.

By Claim 1, $L := \lim f(x_n)$ and $L' = \lim f(y_n)$ both exist. For any $\varepsilon > 0$, let $\delta > 0$ be found as in Claim 1. Since $\lim x_n = \lim y_n$, there is $N \in \mathbb{N}$ such that $|x_n - y_n| < \delta$ for all $n \geq N$ and hence, we have $|f(x_n) - f(y_n)| < \varepsilon$ for all $n \geq N$. Taking $n \to \infty$, we see that $|L - L'| \leq \varepsilon$ for all $\varepsilon > 0$. So L = L'. Claim 2 follows.

Recall that an element $x \in \overline{A}$ if and only if there is a sequence (x_n) in A converging to x. Now for each $x \in \overline{A}$, we define

$$F(x) := \lim f(x_n)$$

if (x_n) is a sequence in A with $\lim x_n = x$. It follows from **Claim 1** and **Claim 2** that F is a well defined function defined on \overline{A} and F(x) = f(x) for all $x \in A$.

So, it remains to show that F is continuous. Then F is a continuous extension of f to \overline{A} as desired.

Now suppose that F is not continuous at some point $z \in \overline{A}$. Then there is $\varepsilon > 0$ such that for any $\delta > 0$, there is $x \in \overline{A}$ satisfying $|x - z| < \delta$ but $|F(x) - F(z)| \ge \varepsilon$. Notice that for any $\delta > 0$ and if $|x - z| < \delta$ for some $x \in \overline{A}$, then we can choose a sequence (x_i) in A such that $\lim x_i = x$. Therefore, we have $|x_i - z| < \delta$ and $|f(x_i) - F(z)| \ge \varepsilon/2$ for any i large enough. Therefore, for any $\delta > 0$, we can find an element $x \in A$ with $|x - z| < \delta$ but $|f(x) - F(z)| \ge \varepsilon/2$. Now consider $\delta = 1/n$ for $n = 1, 2, \ldots$ This yields a sequence (x_n) in A which converges to z but $|f(x_n) - F(z)| \ge \varepsilon/2$ for all n. However, we have $\lim f(x_n) = F(z)$ by the definition of F which leads to a contradiction. Thus F is continuous on \overline{A} .

Finally the uniqueness of such continuous extension is clear.

The proof is finished.

Example 4.6 By using Proposition 4.5, the function $f(x) := \sin \frac{1}{x}$ defined on (0,1] cannot be continuously extended to the set [0,1].

Definition 4.7 Let A be a non-empty subset of \mathbb{R} . A function $f:A\to\mathbb{R}$ is called a Lipschitz if there is a constant C>0 such that $|f(x)-f(y)|\leq C|x-y|$ for all $x,y\in A$. In this case. Furthermore, if we can find such 0< C<1, then we call f a contraction.

It is clear that we have the following property.

Proposition 4.8 Every Lipschitz function is uniformly continuous on its domain.

- **Example 4.9** (i): The sine function $f(x) = \sin x$ is a Lipschitz function on $\mathbb R$ since we always have $|\sin x \sin y| \le |x y|$ for all $x, y \in \mathbb R$ (by using the equation $\sin x \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$ and the fact $|\sin x| \le |x|$ for all $x \in \mathbb R$.)
 - (ii) : Define a function f on [0,1] by $f(x) = x \sin(1/x)$ for $x \in (0,1]$ and f(0) = 0. Then f is continuous on [0,1] and thus f is uniformly continuous on [0,1]. But notice that f is not a Lipschitz function. In fact, for any C > 0, if we consider $x_n = \frac{1}{2n\pi + (\pi/2)}$ and $y_n = \frac{1}{2n\pi}$, then $|f(x_n) f(y_n)| > C|x_n y_n|$ if and only if

$$\frac{2}{\pi} \cdot \frac{(2n\pi + \frac{\pi}{2})(2n\pi)}{2n\pi + \frac{\pi}{2}} = 4n > C.$$

Therefore, for any C > 0, there are $x, y \in [0, 1]$ such that |f(x) - f(y)| > C|x - y| and hence f is not a Lipschitz function on [0, 1].

Proposition 4.10 Let A be a non-empty closed subset of \mathbb{R} . If $f: A \to A$ is a contraction, then there is a fixed point of f, that is, there is a point $a \in A$ such that f(a) = a.

Proof: Since f is a contraction on A, there is 0 < C < 1 such that $|f(x) - f(y)| \le C|x - y|$ for all $x, y \in A$. Fix $x_1 \in A$. Since $f(A) \subseteq A$, we can inductively define a sequence (x_n) in A by $x_{n+1} = f(x_n)$ for n = 1, 2... Notice that we have

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le C|x_n - x_{n-1}|$$

for all n = 2, 3... This gives

$$|x_{n+1} - x_n| \le C^{n-1}|x_2 - x_1|$$

for $n = 2, 3, \dots$ So, for any $n, p = 1, 2\dots$ we see that

$$|x_{n+p} - x_n| \le \sum_{i=n}^{n+p-1} |x_{i+1} - x_i| \le |x_2 - x_1| \sum_{i=n}^{n+p-1} C^{i-1}.$$

Since 0 < C < 1, for any $\varepsilon > 0$, there is N such that $\sum_{i=n}^{n+p-1} C^{i-1} < \varepsilon$ for all $n \ge N$ and p = 1, 2, ... Therefore, (x_n) is a Cauchy sequence and thus the limit $a := \lim_n x_n$ exists. Since A is closed, we have $a \in A$ and hence f is continuous at a. On the other hand, since $x_{n+1} = f(x_n)$. Therefore, we have a = f(a) by taking $n \to \infty$. The proof is finished.

Remark 4.11 The Proposition 4.10 does not hold if f is not a contraction. For example, if we consider f(x) = x - 1 for $x \in \mathbb{R}$, then it is clear that |f(x) - f(y)| = |x - y| and f has no fixed point in \mathbb{R} .

5 Continuous functions defined on intervals

Theorem 5.1 (Intermediate Value Theorem): Let $f : [a,b] \to \mathbb{R}$ be a continuous function. Suppose that f(a) < z < f(b). Then there is c between a and b such that f(c) = z.

Proof: Notice that if we consider the function $x \in [a, b] \mapsto f(x) - z$, then we may assume that z = 0.

Method I: Let

$$S := \{ x \in [a, b] : f(x) \le 0 \}.$$

Notice that the set S is non-empty since $a \in S$ and is bounded. Then by the axiom of completeness, the supremum $c := \sup\{x \in S\}$ exists. Then $c \in [a,b]$ and there is a sequence in S such that $x_n \to c$. This, together with the continuity of f, imply that $f(c) = \lim_n f(x_n) \le 0$ since $x_n \in S$. On the other hand, since $b \notin S$, we see that $c \in [a,b)$. Therefore, we can find a sequence (y_n) with $c < y_n < b$ for all n such that $y_n \to c$ + respectively. By using the continuity of f again, we see that $f(c) = \lim_n f(y_n) \ge 0$ because $y_n \notin S$. Therefore, f(c) = 0. The proof is finished.

Method II: Put $x_1 = a$ and $y_1 = b$. Now if $f(\frac{a+b}{2}) = 0$, then the result is obtained. If $f(\frac{a+b}{2}) > 0$, then we set $x_2 = a$ and $y_2 = \frac{a+b}{2}$. Similarly, if $f(\frac{a+b}{2}) < 0$, then we set $x_2 = \frac{a+b}{2}$ and $y_2 = b$. To repeat the same procedure, if there are x_N and y_N such that $f(\frac{x_N + y_N}{2}) = 0$, then the result is shown. Otherwise, we can find a decreasing sequence of closed and bounded intervals $[a,b] = [x_1,y_1] \supseteq [x_2,y_2] \supseteq \cdots$ with $\lim(y_n - x_n) = 0$ and $f(x_n) < 0 < f(y_n)$ for all n. Then by the Nested Intervals Theorem, we have $\bigcap_n [x_n,y_n] = \{c\}$ for some $c \in [x_1,y_1] = [a,b]$. Moreover, we have $\lim_n x_n = \lim_n y_n = c$. Then by the continuity of f, we see that $f(c) = \lim_n f(x_n) = \lim_n f(y_n)$. Since $f(x_n) < 0 < f(y_n)$ for all n, we have f(c) = 0. The proof is finished.

Remark 5.2 The assumption of the intervals in the Intermediate Value Theorem is essential. For example, consider $I = [0, 1) \cup (2, 3]$ and define $f : I \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \in [0,1) \\ x-1 & \text{if } x \in (2,3]. \end{cases}$$

Then f(0) < 1 < f(3) but $1 \notin f(I)$.

Recall that a non-empty subset I of \mathbb{R} is called an interval if it has one of the following forms.

- (i) \mathbb{R} .
- (ii) $(-\infty, a]$ or $[a, \infty)$ or $(-\infty, a)$ or (a, ∞) for some $a \in \mathbb{R}$.
- (iii) (a,b) or (a,b] or [a,b) or [a,b] for some $a,b \in \mathbb{R}$ with a < b.

Lemma 5.3 Let I be a non-empty subset of \mathbb{R} . Suppose that there are different elements in I. Then I is an interval if and only if for any $a, b \in I$ with a < b, we have $[a, b] \subseteq I$.

Corollary 5.4 Let $f : [a,b] \to \mathbb{R}$. Suppose that $M := \sup\{f(x) : x \in [a,b]\}$ and $m = \inf\{f(x) : x \in [a,b]\}$. Then f([a,b]) = [m,M].

Proof: Notice that if m = M, then f is a constant function and hence, the result is clearly true.

Now suppose that m < M. It is clear that $f([a,b]) \subseteq [m,M]$ because $m \le f(x) \le M$ for all $x \in [a,b]$. For the converse inclusion, notice that since [a,b] is compact, there are x_1 and x_2 in [a,b] such that $f(x_1) = m$ and $f(x_2) = M$. We may assume that $x_1 < x_2$. To apply the Intermediate Value Theorem for the restriction of f on $[x_1,x_2]$, we have $[m,M] \subseteq f([x_1,x_2]) \subseteq f([a,b])$. The proof is finished.

Corollary 5.5 Let I be an interval and let $f: I \to \mathbb{R}$ be a continuous non-constant function. Then f(I) is an interval.

Proof: Notice that by Lemma 5.3, it needs to show that for any $c, d \in f(I)$ with c < d implies that $[c, d] \subseteq f(I)$. Suppose that $a, b \in I$ with a < b satisfy f(a) = c and f(b) = d. Notice that $[a, b] \subseteq I$ because I is an interval. If we put $M = \sup_{x \in [a, b]} f(x)$ and $m = \inf_{x \in [a, b]} f(x)$, then by Corollary 5.4, we have

$$[c,d]\subseteq [m,M]=f([a,b])\subseteq f(I).$$

The proof is finished.

Example 5.6 It is impossible to find a continuous surjection from (a, b) onto $(c, d) \cup (e, f)$ where $d \leq e$.

6 Appendix: Open subsets of \mathbb{R}

Definition 6.1 Let V be a subset of \mathbb{R} .

- (i) A point $c \in V$ is called an interior point of V if there is r > 0 such that $(c r, c + r) \subseteq V$.
- (ii) V is said to be an open subset of \mathbb{R} is for every element in V is an interior point of V. In this case, if $x_0 \in V$, then V is called an open neighborhood of the point x_0 .

Example 6.2 With the notation as above, we have

- (i) All open intervals are open subsets of \mathbb{R} .
- (ii) \emptyset and \mathbb{R} are open subsets.
- (iii) Any closed and bounded interval is not an open subset.
- (iv) The set of all rational numbers \mathbb{Q} is neither open nor closed subset.

Proposition 6.3 A non-empty subset A of \mathbb{R} is open if and only if there is sequence of open intervals $I_n = (a_n, b_n)$ for n = 1, 2, ... such that $A = \bigcup_{n=1}^{\infty} I_n$ and $I_n \cap I_m = \emptyset$ for $m \neq n$.

Proof: Assume that A is an open subset. Notice that $\overline{\mathbb{Q}} = \mathbb{R}$. Since A is open, we see that $A \cap \mathbb{Q}$ is also a non-empty countable subset. Let $A \cap \mathbb{Q} = \{x_1, x_2,\}$. For each x_k , put $I_k := \bigcup \{J : x_k \in J \text{ and } J \text{ is an open interval}\}$. Then $X = \bigcup_{k=1}^{\infty} I_k$. On the other hand, we notice that I_k is also any open interval (Why??). From this, we see that $I_k \cap I_j = \emptyset$ or $I_k = I_j$. Thus, we can find a subsequence (x_{n_k}) such that $I_{n_k} \cap I_{n_j} = \emptyset$ for $k \neq j$. Thus the sequence of disjoint open intervals $(I_{n_k})_{k=1}^{\infty}$ that we want.

Recall that a point $c \in \mathbb{R}$ is called a *limit point (or cluster point)* of a subset A of \mathbb{R} if for any $\delta > 0$, we have $(c - \delta, c + \delta) \cap A \neq \emptyset$.

Moreover, A is said to be a closed subset of \mathbb{R} if A contains all its limit points. Let us recall the following useful fact that we have used many times.

Proposition 6.4 Let A be a subset of \mathbb{R} . Then the following statements are equivalent.

- (i) A is closed.
- (ii) If (x_n) is a sequence in A and $\lim x_n$ exists, then $\lim x_n \in A$.

The following is an important relation between the notion of openness and closeness.

Proposition 6.5 A subset A of \mathbb{R} is open if and only if its complement $A^c = \mathbb{R} \setminus A$ is closed in \mathbb{R} .

Proof: For (\Rightarrow) , we suppose that A is open first but A^c is not closed. Then there is a limit point c of A^c but $c \notin A^c$ and hence, $c \in A$. This implies that there is r > 0 such that $(c-r, c+r) \subseteq A$ because A is open and thus, $(c-r, c+r) \cap A^c = \emptyset$. It contradicts to the assumption of c being a limit point of A^c .

For the converse, assume that A is not an open subset. Then there is a point $c \in A$ which is not an interior. Thus, for any r > 0, we have $(c - r, c + r) \nsubseteq A$. For considering r = 1/n, we can find a sequence in (x_n) in A^c such that $\lim x_n = c$. Notice that $x_n \neq c$ for all n because $c \notin A^c$. This implies that c is a limit point of A^c but $c \notin A^c$ and thus, A^c is not closed. The proof is finished.

Next, let us recall a very important concept in mathematics. A function f is said to be continuous on a subset A of \mathbb{R} if every point $c \in A$ and for any $\varepsilon > 0$, there is $\delta > 0$ such that

$$|f(x) - f(c)| < \varepsilon$$
 whenever $|x - c| < \delta$ and $x \in A$.

This is equivalent to saying that

$$(c - \delta, c + \delta) \cap A \subseteq f^{-1}((f(c) - \varepsilon, f(c) + \varepsilon))$$

$$(6.1)$$

The following is an important characterization of a continuous map which can be generalized to the case of a general topological space.

Strongly recommend: Take the courses for the next: Mathematical III, Real Analysis, Complex Variables with Applications and Introduction to Topology.

Proposition 6.6 Let $f: A \to \mathbb{R}$ be a function defined on a subset A of \mathbb{R} . Then f is continuous on A if and only if for any open subset W of \mathbb{R} , there is an open subset V of \mathbb{R} such that $V \cap A = f^{-1}(W)$.

Proof: Assume that f is continuous on A. Let W be any open subset of \mathbb{R} . If $f^{-1}(W) = \emptyset$, then we just simply take $V = \emptyset$ as required. Now it suffices to consider the case of $f^{-1}(W) \neq \emptyset$. Note that if $c \in f^{-1}(W) \subseteq A$, then there is $\varepsilon_c > 0$ such that $(f(c) - \varepsilon_c, f(c) + \varepsilon_c) \subseteq W$ because W is open. By using Equation 6.1, we can find $\delta_c > 0$ such that

$$(c - \delta_c, c + \delta_c) \cap A \subseteq f^{-1}((f(c) - \varepsilon_c, f(c) + \varepsilon_c)) \subseteq f^{-1}(W).$$

If we let $V := \bigcup_{c \in f^{-1}(W)} (c - \delta_c, c + \delta_c)$, then V is open and $V \cap A = f^{-1}(W)$ as desired.

Conversely, let $c \in A$, we are going to show that f is continuous at c. Let $\varepsilon > 0$. Then by the assumption, there is an open set V such that $V \cap A = f^{-1}(W)$, where $W := (f(c) - \varepsilon, f(c) + \varepsilon)$. Since V is open and $c \in f^{-1}(W) = c \in V \cap A$, there is $\delta > 0$ such that $(c - \delta, c + \delta) \subseteq V$ and thus, we have $|f(x) - f(c)| < \varepsilon$ as $x \in A$ and $|x - c| < \delta$. Therefore, f is continuous at c. The proof is finished.

Definition 6.7 A subset A of \mathbb{R} is said to be disconnected if there are a pair of open subsets U and V of \mathbb{R} with $A \subseteq U \cup V$ such that $U \cap A$ and $V \cap A$ both are non-empty but $(U \cap A) \cap (V \cap A) = \emptyset$.

If A is not disconnected, then A is said to be connected.

Proposition 6.8 Let A be a subset of \mathbb{R} . Suppose that A contains at least two elements. Then A is connected if and only if A is an interval.

Proof: The result is equivalent to saying that A is disconnected if and only if A is not an interval. Suppose that A is not an interval. Then by using Lemma 5.3, there are $a, b \in A$ such that $[a, b] \nsubseteq A$. Let $c \in [a, b] \setminus A$. Notice that a < c < b since $a, b \in A$. Put $U := (-\infty, c)$ and $V := (c, \infty)$. Then the pair of open sets U and V satisfy the condition in Definition 6.7 as above, and thus, A is disconnected.

Now suppose that A is a disconnected set but A is an interval. Let U and V be the open sets as in Definition 6.7. Then we can find some points $a \in U \cap A$ and $b \in V \cap A$. We may assume that a < b. Notice that since U is open, we see that the set $S := \{u_1 \in (a,b) : [a,u_1] \subseteq U\}$ is a non-empty bounded set and thus, one can define $u := \sup S$. On the other hand, since A is an interval by the assumption, we have $u \in [a,b] \subseteq A \subseteq U \cup V$. Since U is open, if $u \in U$, then we can find some $w \in (u,b)$ such that $[u,w] \subseteq U$ which contradicts to u being the supremum of the above set S.

On the other hand, if $u \in V$, then there is $\delta > 0$ such that $u - \delta < u_1 \le u$ for some $u_1 \in S$ and $(u - \delta, u) \subseteq V$ by the definition of supremum and V is open. This implies that $u_1 \in (U \cap A) \cap (V \cap A)$ that contradicts to the fact that $(U \cap A) \cap (V \cap A)$ is empty. Therefore, A must not be an interval. The proof is finished.

Remark 6.9 In Proposition 6.8, we have shown that for a subset of \mathbb{R} , there is no different between a connected set and an interval. Also, at a first glimpse of Definition 6.7, it seems that the definition of a connected set is more complicated than the definition of an interval. It is

quite natural to ask why we have to introduce the connectedness of a set. In fact, the definition of an interval is given by the order structure of \mathbb{R} . Notice that Definition 6.7 is defined by the distance structure (more precise, the topological structure) of \mathbb{R} . Therefore, Proposition 6.8 tells us that Definition 6.7 is a suitable generalization of the concept of "interval" in the case of a general topological space.

We are going to give another proof of the Intermediate Value Theorem.

Theorem 6.10 (Intermediate Value Theorem): If f is a continuous non-constant function defined on an interval D, then f(D) is an interval.

Proof: By using Proposition 6.8, the Theorem is equivalent to saying that f(D) is connected if D is connected, that is, the connectedness of a set is preserved under a continuous map. Suppose that f(D) is disconnected. As in Definition 6.7, let U and V be the pair of open subsets such that $f(D) \subseteq U \cap V$ with $f(D) \cap U$ and $f(D) \cap V$ being non-empty and $(f(D) \cap U) \cap (f(D) \cap V) = \emptyset$. Then by Proposition 6.6, we can find a pair open subsets E and F such that $E \cap D = f^{-1}(U)$ and $F \cap D = f^{-1}(W)$. Then the sets E and F satisfy the condition in Definition 6.7 for the domain D and thus, D is disconnected. The proof is finished.

References

[1] R.G. Bartle and I.D. Sherbert, Introduction to Real Analysis, (4th ed), Wiley, (2011).