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1 Compact Sets in R

Throughout this section, let (xn) be a sequence in R. Recall that a subsequence (xnk
)∞k=1

of (xn) means that (nk)
∞
k=1 is a sequence of positive integers satisfying n1 < n2 < · · · <

nk < nk+1 < · · · , that is, such sequence (nk) can be viewed as a strictly increasing function
n : k ∈ {1, 2, ..} 7→ nk ∈ {1, 2, ...}.
In this case, note that for each positive integer N , there is K ∈ N such that nK ≥ N and thus
we have nk ≥ N for all k ≥ K.

Let us first recall the following two important theorems in real line.

Theorem 1.1 Nested Intervals Theorem Let (In := [an, bn]) be a sequence of closed and
bounded intervals. Suppose that it satisfies the following conditions.

(i) : I1 ⊇ I2 ⊇ I3 ⊇ · · · .

(ii) : limn(bn − an) = 0.

Then there is a unique real number ξ such that
⋂∞
n=1 In = {ξ}.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3]. 2

Theorem 1.2 (Bolzano-Weierstrass Theorem) Every bounded sequence in R has a con-
vergent subsequence.

Proof: See [1, Theorem 3.4.8]. 2

Definition 1.3 A subset A of R is said to be compact (more precise, sequentially compact) if
every sequence in A has a convergent subsequence with the limit in A.

We are now going to characterize the compact subsets of R. The following is an important
notation in mathematics.

Definition 1.4 A subset A is said to be closed in R if it satisfies the condition:

if (xn) is a sequence in A and limxn exists, then limxn ∈ A.

Example 1.5 (i) {a}; [a, b]; [0, 1] ∪ {2}; N; the empty set ∅ and R all are closed subsets of
R.
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(ii) (a, b) and Q are not closed.

The following Proposition is one of the basic properties of a closed subset which can be directly
shown by the definition. So, the proof is omitted here.

Proposition 1.6 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x ∈ R \A, there is δx > 0 such that (x− δx, x+ δx) ∩A = ∅.

The following is an important characterization of a compact set in R. Warning: this result is
not true for the so-called metric spaces in general.

Theorem 1.7 Let A be a closed subset of R. Then the following statements are equivalent.

(i) A is compact.

(ii) A is closed and bounded.

Proof: It is clear that the result follows if A = ∅. So, we assume that A is non-empty.
For showing (i)⇒ (ii), assume that A is compact.
We first claim that A is closed. Let (xn) be a sequence in A. Then by the compactness of A,
there is a convergent subsequence (xnk

) of (xn) with limk xnk
∈ A. So, if (xn) is convergent,

then limn xn = limk xnk
∈ A. Therefore, A is closed.

Next, we are going to show the boundedness of A. Suppose that A is not bounded. Fix an
element x1 ∈ A. Since A is not bounded, we can find an element x2 ∈ A such that |x2−x1| > 1.
Similarly, there is an element x3 ∈ A such that |x3 − xk| > 1 for k = 1, 2. To repeat the same
step, we can obtain a sequence (xn) in A such that |xn − xm| > 1 for m 6= n. From this,
we see that the sequence (xn) does not have a convergent subsequence. In fact, if (xn) has a
convergent subsequence (xnk

). Put L := limk xnk
. Then we can find a pair of sufficient large

positive integers p and q with p 6= q such that |xnp − L| < 1/2 and |xnq − L| < 1/2. This
implies that |xnp − xnq | < 1. It leads to a contradiction because |xnp − xnq | > 1 by the choice
of the sequence (xn). Thus, A is bounded.
It remains to show (ii)⇒ (i). Suppose that A is closed and bounded.
Let (xn) be a sequence in A. Thus, (xn). Then the Bolzano-Weierstrass Theorem assures that
there is a convergent subsequence (xnk

). Then by the closeness of A, limk xnk
∈ A. Thus A is

compact.
The proof is finished.
2

2 Appendix: Compact sets in R, Part 2

For convenience, we call a collection of open intervals {Jα : α ∈ Λ} an open intervals cover
of a given subset A of R, where Λ is an arbitrary non-empty index set, if each Jα is an open
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interval (not necessary bounded) and

A ⊆
⋃
α∈Λ

Jα.

Theorem 2.1 Heine-Borel Theorem: Any closed and bounded interval [a, b] satisfies the
following condition:

(HB) Given any open intervals cover {Jα}α∈Λ of [a, b], we can find finitely many Jα1 , .., JαN

such that [a, b] ⊆ Jα1 ∪ · · · ∪ JαN

Proof: Suppose that [a, b] does not satisfy the above Condition (HB). Then there is an open
intervals cover {Jα}α∈Λ of [a, b] but it it has no finite sub-cover. Let I1 := [a1, b1] = [a, b] and
m1 the mid-point of [a1, b1]. Then by the assumption, [a1,m1] or [m1, b1] cannot be covered
by finitely many Jα’s. We may assume that [a1,m1] cannot be covered by finitely many Jα’s.
Put I2 := [a2, b2] = [a1,m1]. To repeat the same steps, we can obtain a sequence of closed and
bounded intervals In = [an, bn] with the following properties:

(a) I1 ⊇ I2 ⊇ I3 ⊇ · · · · · · ;

(b) limn(bn − an) = 0;

(c) each In cannot be covered by finitely many Jα’s.

Then by the Nested Intervals Theorem, there is an element ξ ∈
⋂
n In such that limn an =

limn bn = ξ. In particular, we have a = a1 ≤ ξ ≤ b1 = b. So, there is α0 ∈ Λ such that ξ ∈ Jα0 .
Since Jα0 is open, there is ε > 0 such that (ξ − ε, ξ + ε) ⊆ Jα0 . On the other hand, there is
N ∈ N such that aN and bN in (ξ − ε, ξ + ε) because limn an = limn bn = ξ. Thus we have
IN = [aN , bN ] ⊆ (ξ − ε, ξ + ε) ⊆ Jα0 . It contradicts to the Property (c) above. The proof is
finished.
2

Remark 2.2 The assumption of the closeness and boundedness of an interval in Heine-Borel
Theorem is essential.
For example, notice that {Jn := (1/n, 1) : n = 1, 2...} is an open interval covers of (0, 1) but
you cannot find finitely many Jn’s to cover the open interval (0, 1).

The following is a very important feature of a compact set.

Theorem 2.3 Let A be a subset of R. Then the following statements are equivalent.

(i) For any open intervals cover {Jα}α∈Λ of A, we can find finitely many Jα1 , .., JαN such
that A ⊆ Jα1 ∪ · · · ∪ JαN .

(ii) A is compact.

(iii) A is closed and bounded.
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Proof: The result will be shown by the following path

(i)⇒ (ii)⇒ (iii)⇒ (i).

For (i) ⇒ (ii), assume that the condition (i) holds but A is not compact. Then there is a
sequence (xn) in A such that (xn) has no subsequent which has the limit in A. Put X =
{xn : n = 1, 2, ...}. Then X is infinite. Also, for each element a ∈ A, there is δa > 0 such that
Ja := (a−δa, a+δa)∩X is finite. Indeed, if there is an element a ∈ A such that (a−δ, a+δ)∩A
is infinite for all δ > 0, then (xn) has a convergent subsequence with the limit a. On the other
hand, we have A ⊆

⋃
a∈A Ja. Then by the compactness of A, we can find finitely many a1, ..., aN

such that A ⊆ Ja1 ∪ · · · ∪ JaN . So we have X ⊆ Ja1 ∪ · · · ∪ JaN . Then by the choice of Ja’s, X
must be finite. This leads to a contradiction. Therefore, A must be compact.
The implication (ii)⇒ (iii) follows from Theorem 1.7 at once.
It remains to show (iii)⇒ (i). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a, b] such that A ⊆ [a, b]. Now let {Jα}α∈Λ be an open intervals cover of
A. Notice that for each element x ∈ [a, b] \A, there is δx > 0 such that (x− δx, x+ δx)∩A = ∅
since A is closed by using Proposition 6.4. If we put Ix = (x− δx, x+ δx) for x ∈ [a, b]\A, then
we have

[a, b] ⊆
⋃
α∈Λ

Jα ∪
⋃

x∈[a,b]\A

Ix.

Using the Heine-Borel Theorem 2.1, we can find finitely many Jα’s and Ix’s, say Jα1 , ..., JαN

and Ix1 , ..., IxK , such that A ⊆ [a, b] ⊆ Jα1 ∪ · · · ∪ JαN ∪ Ix1 ∪ · · · ∪ IxK . Note that Ix ∩ A = ∅
for each x ∈ [a, b] \A by the choice of Ix. Therefore, we have A ⊆ Jα1 ∪ · · · ∪ JαN and hence A
is compact.
The proof is finished. 2

Remark 2.4 In fact, the condition in Theorem 2.3(i) is the usual definition of a compact set
for a general topological space. More precise, if a set A satisfies the Definition 1.4, then A is
said to be sequentially compact. Theorem 2.3 tells us that the notation of the compactness and
the sequentially compactness are the same as in the case of a subset of R. However, these two
notation are different for a general topological space.

Strongly recommended: take the courses: MATH 3060; MATH3070 for the next step.

3 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of R and f : A → R a function defined
on A.

Proposition 3.1 Let f be a continuous function defined on a compact subset A of R. Then
f(A) is a compact subset of R.

Proof: Method I: By using Theorem 2.3 (i)⇔ (iii), it suffices to show that f(A) is a closed
bounded subset of R.
Claim 1: f(A) is bounded.
Suppose not. Then for each positive integer n, there is an element xn ∈ A such that |f(xn)| > n.
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Since A is compact, there is a convergent subsequence (xnk
) with a := limk xnk

∈ A. This gives
limk f(xnk

) = f(a) because f is continuous on a and hence, (f(xnk
)) is a bounded sequence.

This leads to a contradiction to the choice of (xn) which satisfies |f(xnk
)| > nk for all k = 1, 2....

Claim 2: f(A) is a closed subset of R, that is, y ∈ f(A) whenever, a sequence (xn) in A
satisfying limn f(xn) = y.
In fact, there is a convergent subsequence (xk) with z := limk xk ∈ A by using the compactness
of A again. This gives y = limk f(xnk

) = f(z) ∈ f(A) as desired since f is continuous on A.
Method II: Alternatively, we are going to use Theorem 2.3 (i)⇔ (ii).
Let {Ji}i∈I be an open interval covers of f(A). We may assume Ji ∩ f(A) 6= ∅ for each i ∈ I.
Notice that since Ji is an open interval and f is continuous, we see that if f(x) ∈ Ji, then we
can find δx > 0 such that f(z) ∈ Ji whenever z ∈ A with |z − x| < δx. Notice that we have
A ⊆

⋃
x∈A Jx, where Vx := (x − δx, x + δx) and hence, {Vx : x ∈ A} forms an open intervals

cover of A. By using the equivalence (i) ⇔ (ii) in Theorem 2.3, we can find finitely many
x1, ..., xn in A such that A ⊆ Vx1 ∪ · · · ∪ Vxn . For each k = 1, .., n, then f(xk) ∈ Jik for some
ik ∈ I. Now if x ∈ A, then x ∈ Vxk for some k = 1, ..., n. This gives f(x) ∈ Jik and thus,
f(A) ⊆ Ji1 ∪ · · · ∪ Jin . The proof is finished. 2

Corollary 3.2 If f : A→ R is a continuous injection and A is compact, then the inverse map
f−1 : f(A)→ A is also continuous.

Proof: Let B = f(A) and g = f−1 : B → A. Suppose that g is not continuous at some b ∈ B.
Put a = g(b) ∈ A. Then there are η > 0 and a sequence (yn) in B such that lim yn = b but
|g(yn) − g(b)| ≥ η for all n. Let xn := g(yn) ∈ A. So, by the compactness of A, there is a
convergent subsequence (xnk

) of (xn) such that limk xnk
∈ A. Let a′ = limk xnk

. Then we have
f(a′) = limk f(xnk

) = limk ynk
= b. On the other hand, since |g(yn) − g(b)| ≥ η for all n, we

see that
|xnk

− a| = |g(ynk
)− g(b)| ≥ η > 0

for all k and hence |a′ − a| > 0. This implies that a 6= a′ but f(a′) = b = f(a). It contradicts
to f being injective.
The proof is finished. 2

Remark 3.3 The assumption of the compactness in the last assertion of Proposition 3.2 is
essential. For example, consider A = [0, 1) ∪ [2, 3] and define f : A→ R by

f(x) =

{
x if x ∈ [0, 1)

x− 1 if x ∈ [2, 3].

Then f(A) = [0, 2] and f is a continuous bijection from A onto [0, 2] but f−1 : [0, 2] → A is
not continuous at y = 1.

Example 3.4 By Proposition 3.2, it is impossible to find a continuous surjection from [0, 1]
onto (0, 1) since [0, 1] is compact but (0, 1) is not. Thus [0, 1] is not homeomorphic to (0, 1).

Proposition 3.5 Suppose that f is continuous on A. If A is compact, then there are points c
and b in A such that

f(c) = max{f(x) : x ∈ A} and f(b) = min{f(x) : x ∈ A}.
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Proof: By considering the function −f on A, it needs to show that f(c) = max{f(x) : x ∈ A}
for some c ∈ A.
Method I:
We first claim that f is bounded on A, that is, there is M > 0 such that |f(x)| ≤ M for
all x ∈ A. Suppose not. Then for each n ∈ N, we can find an ∈ A such that |f(an)| > n.
Recall that A is compact if and only if it is closed and bounded (see Theorem ??). So, (an)
is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent
subsequence (ank

) of (an). Put a = limk ank
. Since A is closed and f is continuous, a ∈ A,

from this, it follows that f(a) = limk f(ank
). It is absurd because nk < |f(ank

)| → |f(a)| for
all k and nk → ∞. So f must be bounded. So L := sup{f(x) : x ∈ A} must exist by the
Axiom of Completeness.
It remains to show that there is a point c ∈ A such that f(c) = L. In fact, by the definition
of supremum, there is a sequence (xn) in A such that limn f(xn) = L. Then by the Bolzano-
Weierstrass Theorem again, there is a convergent subsequence (xnk

) of (xn) with limk xnk
∈ A.

If we put c := limk xnk
∈ A, then f(c) = limk f(xnk

) = L as desired. The proof is finished.
Method II:
We first claim that f is bounded above. Notice that for each x ∈ A, there is δx > 0 such that
f(y) < f(x) + 1 whenever y ∈ A with |x− y| < δx since f is continuous on A. Now if we put
Jx := (x−δx, x+δx) for each x ∈ A, thenA ⊆

⋃
x∈A Jx. So, by the compactness ofA, we can find

finitely many x1, ..., xN in A such that A ⊆ Jx1∪· · ·∪JxN and it follows that for each x ∈ A, we
have f(x) < 1+f(xk) for some k = 1, ..., N . Now if we put M := max{1+f(x1), ..., 1+f(xN )},
then f is bounded above by M on A.
Put L := sup{f(x) : x ∈ A}. It remains to show that there is an element c ∈ A such that
f(c) = L. Suppose not. Notice that since f(x) ≤ L for all x ∈ A, we have f(x) < L for all
x ∈ A under this assumption. Therefore, by the continuity of f , for each x ∈ A, there are
εx > 0 and ηx > 0 such that f(y) < f(x) + εx < L whenever y ∈ A with |y − x| < δx. Put
Ix := (x−ηx, x+ηx). Then A ⊆

⋃
x∈A Ix. By the compactness of A again, A can be covered by

finitely many Ix1 , ..., IxN . If we let L′ := max{f(x1)+εx1 , ..., f(xN )+εxN }, then f(x) < L′ < L
for all x ∈ A. It contradicts to L being the least upper bound for the set {f(x) : x ∈ A}. The
proof is complete. 2

Definition 3.6 We say that a function f is upper semi-continuous (resp. lower semi-continuous)
on A if for each element z ∈ A and for any ε > 0, there is δ > 0 such that f(x) < f(z) + ε
(resp. f(z)− ε < f(x)) whenever x ∈ A with |x− z| < δ.

Remark 3.7 (i) It is clear that a function is continuous if and only if it is upper semi-
continuous and lower semi-continuous. However, an upper semi-continuous function need
not be continuous. For example, define a function f : R→ R by

f(x) =

{
1 if x ∈ [0, 1]

0 otherwise.

(ii) From the Method II above, we see that if f is upper semi-continuous (resp. lower
semi-continuous) on a compact set A, then the function f attains the supremum (resp.
infimum) on A.
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4 Uniform Continuous Functions

Definition 4.1 A function f : A→ R is said to be uniformly continuous on A if for any ε > 0,
there is δ > 0 such that |f(x)− f(y)| < ε whenever x, y ∈ A with |x− y| < δ.

Remark 4.2 It is clear that if f is uniformly continuous on A, then it must be continuous on
A. However, the converse does not hold. For example, consider the function f : (0, 1] → R
defined by f(x) := 1/x. Then f is continuous on (0, 1] but it is not uniformly continuous on
(0, 1]. Notice that f is not uniformly continuous on A means that

there is ε > 0 such that for any δ > 0, there are x, y ∈ A with |x− y| < δ but |f(x)− f(y)| ≥ ε.

Notice that 1/x→∞ as x→ 0+. So if we let ε = 1, then for any δ > 0, we choose n ∈ N
such that 1/n < δ and thus we have |1/2n − 1/n| = 1/2n < δ but |f(1/n) − f(1/2n)| = n >
1 = ε. Therefore, f is not uniformly continuous on (0, 1].

Example 4.3 Let 0 < a < 1. Define f(x) = 1/x for x ∈ [a, 1]. Then f is uniformly continuous
on [a, 1]. In fact for x, y ∈ [a, 1], we have

|f(x)− f(y)| = |1
x
− 1

y
| = |x− y|

xy
≤ |x− y|

a2
.

So for any ε > 0, we can take 0 < δ < a2ε. Thus if x, y ∈ [a, 1] with |x− y| < δ, then we have
|f(x)− f(y)| < ε and hence f is uniformly continuous on [a, 1].

Proposition 4.4 If f is continuous on a compact set A, then f is uniformly continuous on
A.

Proof: Compactness argument:
Let ε > 0. Since f is continuous on A, then for each x ∈ A, there is δx > 0, such that
|f(y)−f(x)| < ε whenever y ∈ A with |y−x| < δx. Now for each x ∈ A, set Jx = (x− δx

2 , x+ δx
2 ).

Then A ⊆
⋃
x∈A Jx. By the compactness of A, there are finitely many x1, ..., xN ∈ A such

that A ⊆ Jx1 ∪ · · · ∪ JxN . Now take 0 < δ < min(
δx1
2 , ...,

δxN
2 ). Now for x, y ∈ A with

|x − y| < δ, then x ∈ Ixk for some k = 1, .., N , from this it follows that |x − xk| <
δxk
2 and

|y−xk| ≤ |y−x|+|x−xk| ≤
δxk
2 +

δxk
2 = δxk . So for the choice of δxk , we have |f(y)−f(xk)| < ε

and |f(x) − f(xk)| < ε. Thus we have shown that |f(x) − f(y)| < 2ε whenever x, y ∈ A with
|x− y| < δ. The proof is finished.
Sequentially compactness argument:
Suppose that f is not uniformly continuous on A. Then there is ε > 0 such that for each
n = 1, 2, .., we can find xn and yn in A with |xn − yn| < 1/n but |f(xn) − f(yn)| ≥ ε. Notice
that by the sequentially compactness of A, (xn) has a convergent subsequence (xnk

) with
a := limk xnk

∈ A. Now applying sequentially compactness of A for the sequence (ynk
), then

(ynk
) contains a convergent subsequence (ynkj

) such that b := limj ynkj
∈ A. On the other

hand, we also have limj xnkj
= a. Since |xnkj

− ynkj
| < 1/nkj for all j, we see that a = b. This

implies that limj f(xnkj
) = f(a) = f(b) = limj f(ynkj

). This leads to a contradiction since we

always have |f(xnkj
)− f(ynkj

)| ≥ ε > 0 for all j by the choice of xn and yn above. The proof

is finished. 2
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Proposition 4.5 Let f be a continuous function defined on a bounded subset A of R. Then
the following statements are equivalent.

(i): f is uniformly continuous on A.

(ii): There is a unique continuous function F defined on the closure A such that F (x) = f(x)
for all x ∈ A.

Proof: Notice that since A is bounded then so is A. This implies that A is compact. The Part
(ii)⇒ (i) follows Proposition 4.4 at once.
The proof of Part (i)⇒ (ii) is divided by the following assertions. Assume that f is uniformly
continuous on A.
Claim 1. If (xn) is a sequence in A and limxn exists, then lim f(xn) exists.
It needs to show that (f(xn)) is a Cauchy sequence. Indeed, let ε > 0. Then by the uniform
continuity of f onA, there is δ > 0 such that |f(x)−f(y)| < ε whenever x, y ∈ A with |x−y| < δ.
Notice that (xn) is a Cauchy sequence since it is convergent. Thus, there is a positive integer
N such that |xm − xn| < δ for all m,n ≥ N . This implies that |f(xm) − f(xn)| < ε for all
m,n ≥ N and hence, Claim 1 follows.
Claim 2. If (xn) and (yn) both are convergent sequences in A and limxn = lim yn, then
lim f(xn) = lim f(yn).
By Claim 1, L := lim f(xn) and L′ = lim f(yn) both exist. For any ε > 0, let δ > 0 be found
as in Claim 1. Since limxn = lim yn, there is N ∈ N such that |xn − yn| < δ for all n ≥ N
and hence, we have |f(xn)− f(yn)| < ε for all n ≥ N . Taking n→∞, we see that |L−L′| ≤ ε
for all ε > 0. So L = L′. Claim 2 follows.
Recall that an element x ∈ A if and only if there is a sequence (xn) in A converging to x.
Now for each x ∈ A, we define

F (x) := lim f(xn)

if (xn) is a sequence in A with limxn = x. It follows from Claim 1 and Claim 2 that F is a
well defined function defined on A and F (x) = f(x) for all x ∈ A.
So, it remains to show that F is continuous. Then F is a continuous extension of f to A as
desired.
Now suppose that F is not continuous at some point z ∈ A. Then there is ε > 0 such that for
any δ > 0, there is x ∈ A satisfying |x − z| < δ but |F (x) − F (z)| ≥ ε. Notice that for any
δ > 0 and if |x − z| < δ for some x ∈ A, then we can choose a sequence (xi) in A such that
limxi = x. Therefore, we have |xi − z| < δ and |f(xi) − F (z)| ≥ ε/2 for any i large enough.
Therefore, for any δ > 0, we can find an element x ∈ A with |x−z| < δ but |f(x)−F (z)| ≥ ε/2.
Now consider δ = 1/n for n = 1, 2.... This yields a sequence (xn) in A which converges to z
but |f(xn)− F (z)| ≥ ε/2 for all n. However, we have lim f(xn) = F (z) by the definition of F
which leads to a contradiction. Thus F is continuous on A.
Finally the uniqueness of such continuous extension is clear.
The proof is finished. 2

Example 4.6 By using Proposition 4.5, the function f(x) := sin 1
x defined on (0, 1] cannot be

continuously extended to the set [0, 1].
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Definition 4.7 Let A be a non-empty subset of R. A function f : A→ R is called a Lipschitz
if there is a constant C > 0 such that |f(x)− f(y)| ≤ C|x− y| for all x, y ∈ A. In this case.
Furthermore, if we can find such 0 < C < 1, then we call f a contraction.

It is clear that we have the following property.

Proposition 4.8 Every Lipschitz function is uniformly continuous on its domain.

Example 4.9 (i) : The sine function f(x) = sinx is a Lipschitz function on R since we
always have | sinx− sin y| ≤ |x− y| for all x, y ∈ R (by using the equation sinx− sin y =
2 cos x+y

2 sin x−y
2 and the fact | sinx| ≤ |x| for all x ∈ R.)

(ii) : Define a function f on [0, 1] by f(x) = x sin(1/x) for x ∈ (0, 1] and f(0) = 0. Then f is
continuous on [0, 1] and thus f is uniformly continuous on [0, 1]. But notice that f is not
a Lipschitz function. In fact, for any C > 0, if we consider xn = 1

2nπ+(π/2) and yn = 1
2nπ ,

then |f(xn)− f(yn)| > C|xn − yn| if and only if

2

π
·

(2nπ + π
2 )(2nπ)

2nπ + π
2

= 4n > C.

Therefore, for any C > 0, there are x, y ∈ [0, 1] such that |f(x) − f(y)| > C|x − y| and
hence f is not a Lipschitz function on [0, 1].

Proposition 4.10 Let A be a non-empty closed subset of R. If f : A → A is a contraction,
then there is a fixed point of f , that is, there is a point a ∈ A such that f(a) = a.

Proof: Since f is a contraction on A, there is 0 < C < 1 such that |f(x) − f(y)| ≤ C|x − y|
for all x, y ∈ A. Fix x1 ∈ A. Since f(A) ⊆ A, we can inductively define a sequence (xn) in A
by xn+1 = f(xn) for n = 1, 2... Notice that we have

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ C|xn − xn−1|

for all n = 2, 3... This gives
|xn+1 − xn| ≤ Cn−1|x2 − x1|

for n = 2, 3, .... So, for any n, p = 1, 2.., we see that

|xn+p − xn| ≤
n+p−1∑
i=n

|xi+1 − xi| ≤ |x2 − x1|
n+p−1∑
i=n

Ci−1.

Since 0 < C < 1, for any ε > 0, there is N such that
∑n+p−1

i=n Ci−1 < ε for all n ≥ N
and p = 1, 2, ... Therefore, (xn) is a Cauchy sequence and thus the limit a := limn xn exists.
Since A is closed, we have a ∈ A and hence f is continuous at a. On the other hand, since
xn+1 = f(xn). Therefore, we have a = f(a) by taking n→∞. The proof is finished. 2

Remark 4.11 The Proposition 4.10 does not hold if f is not a contraction. For example, if
we consider f(x) = x− 1 for x ∈ R, then it is clear that |f(x)− f(y)| = |x− y| and f has no
fixed point in R.
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5 Continuous functions defined on intervals

Theorem 5.1 (Intermediate Value Theorem): Let f : [a, b] → R be a continuous func-
tion. Suppose that f(a) < z < f(b). Then there is c between a and b such that f(c) = z.

Proof: Notice that if we consider the function x ∈ [a, b] 7→ f(x)− z, then we may assume that
z = 0.
Method I: Let

S := {x ∈ [a, b] : f(x) ≤ 0}.

Notice that the set S is non-empty since a ∈ S and is bounded. Then by the axiom of
completeness, the supremum c := sup{x ∈ S} exists. Then c ∈ [a, b] and there is a sequence in
S such that xn → c. This, together with the continuity of f , imply that f(c) = limn f(xn) ≤ 0
since xn ∈ S. On the other hand, since b /∈ S, we see that c ∈ [a, b). Therefore, we can find a
sequence (yn) with c < yn < b for all n such that yn → c+ respectively. By using the continuity
of f again, we see that f(c) = limn f(yn) ≥ 0 because yn /∈ S. Therefore, f(c) = 0. The proof
is finished.
Method II: Put x1 = a and y1 = b. Now if f(a+b

2 ) = 0, then the result is obtained. If

f(a+b
2 ) > 0, then we set x2 = a and y2 = a+b

2 . Similarly, if f(a+b
2 ) < 0, then we set x2 = a+b

2
and y2 = b. To repeat the same procedure, if there are xN and yN such that f(xN+yN

2 ) = 0,
then the result is shown. Otherwise, we can find a decreasing sequence of closed and bounded
intervals [a, b] = [x1, y1] ⊇ [x2, y2] ⊇ · · · with lim(yn − xn) = 0 and f(xn) < 0 < f(yn) for all
n. Then by the Nested Intervals Theorem, we have

⋂
n[xn, yn] = {c} for some c ∈ [x1, y1] =

[a, b]. Moreover, we have limn xn = limn yn = c. Then by the continuity of f , we see that
f(c) = lim f(xn) = lim f(yn). Since f(xn) < 0 < f(yn) for all n, we have f(c) = 0. The proof
is finished. 2

Remark 5.2 The assumption of the intervals in the Intermediate Value Theorem is essential.
For example, consider I = [0, 1) ∪ (2, 3] and define f : I → R by

f(x) =

{
x if x ∈ [0, 1)

x− 1 if x ∈ (2, 3].

Then f(0) < 1 < f(3) but 1 /∈ f(I).

Recall that a non-empty subset I of R is called an interval if it has one of the following forms.

(i) R.

(ii) (−∞, a] or [a,∞) or (−∞, a) or (a,∞) for some a ∈ R.

(iii) (a, b) or (a, b] or [a, b) or [a, b] for some a, b ∈ R with a < b.

Lemma 5.3 Let I be a non-empty subset of R. Suppose that there are different elements in I.
Then I is an interval if and only if for any a, b ∈ I with a < b, we have [a, b] ⊆ I.
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Corollary 5.4 Let f : [a, b]→ R. Suppose that M := sup{f(x) : x ∈ [a, b]} and m = inf{f(x) :
x ∈ [a, b]}. Then f([a, b]) = [m,M ].

Proof: Notice that if m = M , then f is a constant function and hence, the result is clearly
true.
Now suppose that m < M . It is clear that f([a, b]) ⊆ [m,M ] because m ≤ f(x) ≤ M for all
x ∈ [a, b]. For the converse inclusion, notice that since [a, b] is compact, there are x1 and x2

in [a, b] such that f(x1) = m and f(x2) = M . We may assume that x1 < x2. To apply the
Intermediate Value Theorem for the restriction of f on [x1, x2], we have [m,M ] ⊆ f([x1, x2]) ⊆
f([a, b]). The proof is finished. 2

Corollary 5.5 Let I be an interval and let f : I → R be a continuous non-constant function.
Then f(I) is an interval.

Proof: Notice that by Lemma 5.3, it needs to show that for any c, d ∈ f(I) with c < d implies
that [c, d] ⊆ f(I). Suppose that a, b ∈ I with a < b satisfy f(a) = c and f(b) = d. Notice that
[a, b] ⊆ I because I is an interval. If we put M = supx∈[a,b] f(x) and m = infx∈[a,b] f(x), then
by Corollary 5.4, we have

[c, d] ⊆ [m,M ] = f([a, b]) ⊆ f(I).

The proof is finished. 2

Example 5.6 It is impossible to find a continuous surjection from (a, b) onto (c, d) ∪ (e, f)
where d ≤ e.

6 Appendix: Open subsets of R

Definition 6.1 Let V be a subset of R.

(i) A point c ∈ V is called an interior point of V if there is r > 0 such that (c− r, c+ r) ⊆ V .

(ii) V is said to be an open subset of R is for every element in V is an interior point of V .
In this case, if x0 ∈ V , then V is called an open neighborhood of the point x0.

Example 6.2 With the notation as above, we have

(i) All open intervals are open subsets of R.

(ii) ∅ and R are open subsets.

(iii) Any closed and bounded interval is not an open subset.

(iv) The set of all rational numbers Q is neither open nor closed subset.

Proposition 6.3 A non-empty subset A of R is open if and only if there is sequence of open
intervals In = (an, bn) for n = 1, 2, ... such that A =

⋃∞
n=1 In and In ∩ Im = ∅ for m 6= n.
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Proof: Assume that A is an open subset. Notice that Q = R. Since A is open, we see that
A ∩ Q is also a non-empty countable subset. Let A ∩ Q = {x1, x2, ....}. For each xk, put
Ik :=

⋃
{J : xk ∈ J and J is an open interval}. Then X =

⋃∞
k=1 Ik. On the other hand, we

notice that Ik is also any open interval (Why??). From this, we see that Ik∩Ij = ∅ or Ik = Ij .
Thus, we can find a subsequence (xnk

) such that Ink
∩ Inj = ∅ for k 6= j. Thus the sequence of

disjoint open intervals (Ink
)∞k=1 that we want.

The converse is clear. 2

Recall that a point c ∈ R is called a limit point (or cluster point) of a subset A of R if for
any δ > 0, we have (c− δ, c+ δ) ∩A 6= ∅.
Moreover, A is said to be a closed subset of R if A contains all its limit points. Let us recall
the following useful fact that we have used many times.

Proposition 6.4 Let A be a subset of R. Then the following statements are equivalent.

(i) A is closed.

(ii) If (xn) is a sequence in A and limxn exists, then limxn ∈ A.

The following is an important relation between the notion of openness and closeness.

Proposition 6.5 A subset A of R is open if and only if its complement Ac = R \ A is closed
in R.

Proof: For (⇒), we suppose that A is open first but Ac is not closed. Then there is a limit point
c of Ac but c /∈ Ac and hence, c ∈ A. This implies that there is r > 0 such that (c−r, c+r) ⊆ A
because A is open and thus, (c− r, c+ r)∩Ac = ∅. It contradicts to the assumption of c being
a limit point of Ac.
For the converse, assume that A is not an open subset. Then there is a point c ∈ A which is
not an interior. Thus, for any r > 0, we have (c − r, c + r) " A. For considering r = 1/n, we
can find a sequence in (xn) in Ac such that limxn = c. Notice that xn 6= c for all n because
c /∈ Ac. This implies that c is a limit point of Ac but c /∈ Ac and thus, Ac is not closed. The
proof is finished. 2

Next, let us recall a very important concept in mathematics. A function f is said to be
continuous on a subset A of R if every point c ∈ A and for any ε > 0, there is δ > 0 such that

|f(x)− f(c)| < ε whenever |x− c| < δ and x ∈ A.

This is equivalent to saying that

(c− δ, c+ δ) ∩A ⊆ f−1
(
(f(c)− ε, f(c) + ε)

)
(6.1)

The following is an important characterization of a continuous map which can be general-
ized to the case of a general topological space.

Strongly recommend: Take the courses for the next: Mathematical III, Real
Analysis, Complex Variables with Applications and Introduction to Topology.
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Proposition 6.6 Let f : A→ R be a function defined on a subset A of R. Then f is continuous
on A if and only if for any open subset W of R, there is an open subset V of R such that
V ∩A = f−1(W ).

Proof: Assume that f is continuous on A. Let W be any open subset of R. If f−1(W ) = ∅,
then we just simply take V = ∅ as required. Now it suffices to consider the case of f−1(W ) 6= ∅.
Note that if c ∈ f−1(W ) ⊆ A, then there is εc > 0 such that (f(c)− εc, f(c) + εc) ⊆W because
W is open. By using Equation 6.1, we can find δc > 0 such that

(c− δc, c+ δc) ∩A ⊆ f−1
(
(f(c)− εc, f(c) + εc)

)
⊆ f−1(W ).

If we let V :=
⋃

c∈f−1(W )

(c− δc, c+ δc), then V is open and V ∩A = f−1(W ) as desired.

Conversely, let c ∈ A, we are going to show that f is continuous at c. Let ε > 0. Then by the
assumption, there is an open set V such that V ∩A = f−1(W ), where W := (f(c)−ε, f(c)+ε).
Since V is open and c ∈ f−1(W ) = c ∈ V ∩ A, there is δ > 0 such that (c− δ, c+ δ) ⊆ V and
thus, we have |f(x)− f(c)| < ε as x ∈ A and |x− c| < δ. Therefore, f is continuous at c. The
proof is finished. 2

Definition 6.7 A subset A of R is said to be disconnected if there are a pair of open subsets U
and V of R with A ⊆ U∪V such that U∩A and V ∩A both are non-empty but (U∩A)∩(V ∩A) =
∅.
If A is not disconnected, then A is said to be connected.

Proposition 6.8 Let A be a subset of R. Suppose that A contains at least two elements. Then
A is connected if and only if A is an interval.

Proof: The result is equivalent to saying that A is disconnected if and only if A is not an
interval. Suppose that A is not an interval. Then by using Lemma 5.3, there are a, b ∈ A such
that [a, b] * A. Let c ∈ [a, b] \ A. Notice that a < c < b since a, b ∈ A. Put U := (−∞, c)
and V := (c,∞). Then the pair of open sets U and V satisfy the condition in Definition 6.7 as
above, and thus, A is disconnected.
Now suppose that A is a disconnected set but A is an interval. Let U and V be the open sets
as in Definition 6.7. Then we can find some points a ∈ U ∩A and b ∈ V ∩A. We may assume
that a < b. Notice that since U is open, we see that the set S := {u1 ∈ (a, b) : [a, u1] ⊆ U} is a
non-empty bounded set and thus, one can define u := supS. On the other hand, since A is an
interval by the assumption, we have u ∈ [a, b] ⊆ A ⊆ U ∪ V . Since U is open, if u ∈ U , then
we can find some w ∈ (u, b) such that [u,w] ⊆ U which contradicts to u being the supremum
of the above set S.
On the other hand, if u ∈ V , then there is δ > 0 such that u − δ < u1 ≤ u for some
u1 ∈ S and (u − δ, u) ⊆ V by the definition of supremum and V is open. This implies that
u1 ∈ (U ∩A)∩ (V ∩A) that contradicts to the fact that (U ∩A)∩ (V ∩A) is empty. Therefore,
A must not be an interval. The proof is finished. 2

Remark 6.9 In Proposition 6.8, we have shown that for a subset of R, there is no different
between a connected set and an interval. Also, at a first glimpse of Definition 6.7, it seems that
the definition of a connected set is more complicated than the definition of an interval. It is
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quite natural to ask why we have to introduce the connectedness of a set. In fact, the definition
of an interval is given by the order structure of R. Notice that Definition 6.7 is defined by the
distance structure (more precise, the topological structure) of R. Therefore, Proposition 6.8
tells us that Definition 6.7 is a suitable generalization of the concept of “interval” in the case
of a general topological space.

We are going to give another proof of the Intermediate Value Theorem.

Theorem 6.10 (Intermediate Value Theorem): If f is a continuous non-constant func-
tion defined on an interval D, then f(D) is an interval.

Proof: By using Proposition 6.8, the Theorem is equivalent to saying that f(D) is connected
if D is connected, that is, the connectedness of a set is preserved under a continuous map.
Suppose that f(D) is disconnected. As in Definition 6.7, let U and V be the pair of open
subsets such that f(D) ⊆ U ∩ V with f(D) ∩ U and f(D) ∩ V being non-empty and (f(D) ∩
U) ∩ (f(D) ∩ V ) = ∅. Then by Proposition 6.6, we can find a pair open subsets E and F such
that E ∩D = f−1(U) and F ∩D = f−1(W ). Then the sets E and F satisfy the condition in
Definition 6.7 for the domain D and thus, D is disconnected. The proof is finished. 2
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